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The rate of convergence of the discrete P6lya-1 algorithm is studied. Examples
are given to show that the rates derived are sharp. ,n 1993 Academic Press, Inc.

Let V be a finite dimensional subspace of Wand fix Z E IR n
\ V. Given a

norm, 11·11, on W, v* E V is a best approximation from V to z if

Ilv* - zll = min{ Ilv - zll :VE V}.

In this setting the existence of a best approximation is immediate. Of
course, different norms may give rise to different best approximations. The
dependence of best approximations on the norm in use has been studied in
a variety of contexts, For example, [1] and [10] are general studies of the
effects of perturbing the norm on best approximation problems.

The p-norms, given by

and

form a well-known parameterized family of norms on IR n
• Denote by I P the

space IR n with the p-norm. In the IP family of Banach spaces, selecting a
value of p corresponds to a choice of norm. Each such choice determines
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a different best approximation problem. Discussions of the relative merits
of specific values of p date from the 18th century [2].

For 1<p < 00 the corresponding p-norm is strictly convex, so that there
is a unique solution to the best approximation problem for this p. Denote
this solution by x p

• For p = 1 and p = 00 solutions to this best approxima­
tion problem need not be unique. The problem of the dependence on p of
best approximations has been extensively studied. Of particular interest has
been the behavior of the arc x P as p -> 00. The taking of such a limit is
referred to as the P61ya algorithm and was first considered by P61ya in a
related setting [9]. In the subspace setting it is known that the P61ya
algorithm converges and that in general the rate of this convergence is
O(1/p) [3,4].

The behavior of the arc x P as p -> 1 has also been studied [6-8, 12].
Taking this limit is known as the P6lya-l algorithm. The P6lya-l algorithm
converges in a very general setting, including the subspace problem under
consideration here. Aside from an example and a conjecture [4] little is
known about the rate at which the P6lya-l algorithm converges. In the
following, the rate of convergence is developed. In contrast to the P61ya
algorithm rate, it is shown that the rate of convergence of x P depends
heavily upon the set L of /1 best approximations. To see this consider the
following examples:

EXAMPLE 1. In 1R 3, let z = (0, 0, 1) and let V = {(a, a, a): a E IR}. Here
the /1 best approximation is unique and is the median (0,0,0). To find ..,,;I',
there is no point in considering a> 1 or a < O. So we minimize
2aP+ (1 - a)p over [0, 1]. Differentiating gives 2ab

- (1 - a)b = 0, where
b=::p-1. Thus (l-a)=2 1Iba or 2- I

/
b=::a/(I-a). For p near 1,

~ ~ 1 - a ~ 1, so a = 0(2 -lib). Thus x P -> Xl at an exponential rate.
When the set L is not a singleton, a slower rate of convergence may

hold.

EXAMPLE 2. In 1R4, let z = (2, 1,0,0) and V = {a( 1, 1, 1, -1): a E IR}.
Here L = {a( 1, 1, 1, -1): a E [0, I]}. Consider the strict best approxima­
tion Xl = a l (l, 1, 1, -1), the limit of x P as p -> 1. On L, a l minimizes
I/I(r) = (2 - r) In(2 - r) + (1 - r) In(1 - r) + 2r In(r). (See Theorem 1.) Now
I/I'(r) =2 In(r)-ln{(2-r)(l-r)}, yielding critical values 0,1, and~. Since
Xl lies in the relative interior of L [6], al=~. Write x P=a P(I, 1, 1, -1).
Since xp->x 1

, we know that for small p>l, ~<aP<~. Note that for
values of r between 0 and 1, I/Ip(r)=lIz-r(l, 1, 1, -1)1I~=::(2-r)p+

(1- r)P + 2(r)P. Then I/I~(r) = -p«2 - r)b + (1- r)b - 2(r)b), where b =::
p -1. Then I/I~(~) = _p«~)b + Wb - 2(~)b) = -p3 -b(2b _1)2 < O. This
forces aP> ~ for small p> 1. Thus, for small p, 2> p > 1, ~ > aP>~.

640/75/3·6
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Therefore, for such small p> 1, we may write aP = ~ + 8p /3, where
0< 8p <~. Hence 8p satisfies

« 4 - 8p )/3)b + « 1- 8p )/3)b - 2( (2 + 8p )/3)b

= 0 = (4 - 8p )b + (1 - 8p )b - 2(2 + 8p t
Thus, 4b - (4 - 8p )b + 1 - (1 - 8p )b + 2(2 + 8p )b - 2(2b) = (2 b - 1)2. Now
apply the Mean Value Theorem individually to the expressions (4-X)b,
(1- X)b, (2 + X)b, and 2x all centered at x = 0 to get constants cj' 4 - 8p <
C 1 <4, 1-8p <c2 < 1, 2<c 3 <2+8p , and O<c4 <f> such that

be (C b - I + Cb - l + Cb - I) - (f>2 C4 ln 2)2p I 2 3 - .

Thus, 8p=f>22C4(ln22)(cf-l+c~-I+c~-I)-1 and there exist posItIve
constants A and B such that A ~ 2 2C4 (ln22)(cf- I + c~- I + c~ - I) -I ~ B for
p in this range. Hence 4Af> ~ Ilx P - xliiI ~ 4Bf> for small p> 1. Thus, x P

converges linearly to Xl as p ~ 1.

We now show that this dichotomy in rates holds in general. As above,
denote by L the set of all II best approximations from V to z. For r E lR,
we know that rln(r) ~ 0 as r ~ 0 +. Hence we identify (0 In(O» with 0 and,
for XE W, define the function l/!(x) by

n

l/!(x)= L Ixj-zjlln Ixj-zjl·
;~ I

The limiting behavior of the net {x P : p > I} is described in the following
theorem.

THEOREM 1. [6,8, 12]. Under the above hypotheses, there exists VEL

such that limp ~ I x P = v. Furthermore, v is in the relative interior of L and is
the unique minimizer of l/! on L.

The element v is known as the natural best approximation or the strict
best approximation of Z E lR n from V. Our interest is in the rate at which the
best I p approximations converge to the natural best approximation. Since
this rate is unaffected by translation and scaling, we assume that v = 0 and
that IIzlloc < 1/2e2 holds. Define Q= {i: z;==O}. The following lemmas
describe the zero structure of vectors near v == O.

LEMMA 1. If VEL and i EQ then Vj = O.

LEMMA 2. For some p > 0 and 8> 0, the set W= {XE W: Ilxll < p}
has the following property: For x E Wand i ¢ Q, Ix j - Z j I > 8 and
sgn(zj - xJ = sgn(z;).
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Lemma 1 follows from the minimality of "'(0) on L. Suppose VEL and
v;:;6 0 for some i E Q. Then for sufficiently small A, we would have AV E L
and "'(Av) < "'(0). This contradicts Theorem 1. Lemma 2 is a simple
consequence of the continuity of each coordinate as a function of x.

The smoothness and strict convexity of the p-norms, 1 <p < 00, yield
well-known uniqueness and characterization results for the corresponding
[p best approximation problems. While the I-norm is not smooth, it does
possess one-sided directional derivatives [11]. For x and YEW, II ylll = 1,
define

D ( ) = I' IIx + tY1l1 - IIxll l
I' x 1m .
. I ~o+ t

Dy(x) is well defined for each such x, y pair and has the explicit
formulation

Dy(x)= L sgn(x;) y;+ L: IY;I,
S' s

where S = S, = {i:x; = O} and SC denotes the complement of Sin {I, ... , n}.
Consider WE W n L. By Lemmas 1 and 2, W; = 0 for i E Q and

sgn(z;-w;)=sgn(z;) for i¢Q. Hence

D,,(z-w)= L: sgn(z;-w;)v;+ L: Iv;1
;,D ;ED

= L sgn(z;) v;+ L: Iv;1 =D,,(z).
ifD ieD

This gives:

LEMMA 3. Let WE WnL andvEW. Then D,,(z-w)=D,,(z).

For vEL, Lemma 1 requires that supp(v) £ QC. The following lemma
provides a partial converse.

LEMMA 4. Suppose that v E V and supp( v) £ QC. Then AV E L for small
..1.>0.

Proof: There is no loss in assuming II vII, = 1. Hence,

Dv(z) = L: sgn(z,) v; + L: Iv;1 = L: sgn(z;) v;
;,D ;ED ;,D

This implies that D,,(z)=D_,,(z)=O. Indeed, if not, then one must be
negative. Without loss of generality, assume D,,(O) < O. Then the definition
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of Dv(z) requires that II pv - zll, < liz II , for small P> O. This contradicts the
{' optimality of O. Now, for IAI sufficiently small, AV E Wand therefore
sgn(z;)=sgn(z;-Av;), for all i~Q. Thus,

n

Ilz-Avlll = L IZj-AVjl = L IZj-Avjl
j~ I j~Q

= 2: sgn(z;-).V,)(Z;-AV;) = 2: sgn(z;)(z;-AV;)
;~Q ;~Q

implying that AV EL.I

Directional derivatives provide a bound on the approximation error,
Ilx - zlll' near L as follows:

LEMMA 5. Let wELn W, VE V with Ilvll l = 1, and D=min(Dv(z),
D_v(z)). Then D~O and

8())= Ilz-w+Avlll-llz-wll l >-D
. IAI r .

Proof Note that if D < 0, one of the directional derivatives would be
negative. As in Lemma 4, this would contradict the {' optimality of O. Fix
A> 0 and let 0 < t :( I hold. Then,

liz - w + tAvlll -liz - wll, = Ilt(z - w + AV) + (I - t)(z - W)1l1 - liz - will

:( t liz - w + Avlll + (I - t)llz - will - liz - wll,

= t(lIz - w + Avll l -liz - will)'

Hence,

II 1 II II II . I' liz - w + Atvlll -liz - willz - W + ltV I - Z - W I = It 1m
AI ~ 0+ At

Thus, for A> 0 then 8(A)/I).1 ~ Dv(z) ~ D holds. Likewise, for the case A< 0
essentially the same argument shows that 8(A)/IAI ~D_V<z)~D holds. I

Note that Lemma 5 is a directional strong uniqueness result at w in the
direction of v E V whenever D > °holds. That is,

liz - w+ Avll l ~ Ilz- will + Dllw- AV- will



DISCRETE P6LYA-1 ALGORITHM 317

holds for all IAI sufficiently small. For the special case of w = 0, this has the
form

If D = 0, then no such directional strong uniqueness result exists. In fact,
if D = 0 occurs, then for small A> 0 both AV and - AV are in L. Indeed,
suppose that D,,(z) = O. Then for A> 0 sufficiently small, - ).v E W so that

Ilz+Avll l = L sgn(zJ(zi+AVJ+A L Ivil
i<tD iED

=llzIII+A L sgn(z;)v;+A L Iv;1
i<tD iED

= Ilzlll +)'D,,(z) = Ilzlll'

Hence, - AV ELand since 0 is in the relative interior of L, it follows that
.AV must be in L for sufficiently small A> O. Thus, the lack of a local
directional strong uniqueness estimate in this case corresponds to
approaching 0 through L locally. On the other hand, if v is perpendicular
to K = span(L) then a directional strong uniqueness estimate at 0 in the
direction of v will hold. Rephrased, this implies that the approximation
error must grow no more slowly than some fixed linear rate for all
directions in K 1-. This is established in Lemma 6.

LEMMA 6. For arbitrary wand v satisfying WE W n L, v E V, ~vith

II vIII = 1 and v 1- K, there exists ko > 0 such that

liz - w + Avll l ~ liz - will +koIAI

Proof For A=I 0 Lemma 5 implies that

for each ). E IR.

Now, we claim that there exists ko > 0 such that D ~ ko for all v E V with
Ilvl l = 1 and v 1- K. Indeed, assume that D = D,,(z) without loss of
generality. If D is not uniformily bounded away from zero we may
construct a convergent sequence Vn from V such that Ilvnlll = 1, Vn 1- K, and
D".(z) < lin. Suppose limn~ 00 Vn = v*, which can be realized by passing to
subsequences if necessary. Then v* E V, v* 1- K, and IIv* II. = 1. We claim
that D".(z) = O. To see this, let x E V. Then

jeD ierx ie 'fix. ie Ax
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where r,={i:x;z;>O}, 'Px={i:x;z;<O}, and Llx={i:i¢Q and xj=O}.
Of course the final term contributes 0 to the expression. For large n,
Fv' = F•.• and 'P•.• = 'Pv• so that

and

This implies that IDv.(z)-Dv.(z)1 ~ Ilvn-v*II!. Hence Dv'(z)=O. Then, as
in the comments following Lemma 5, A.v* E L for small IA.I. This contradicts
the fact that v* .1 K. The result now follows, since both v and - v satisfy
the hypotheses. I

As before, let x P be the best I P approximation from V to z. Let wP and
vP be the projections of x P onto K and K.l, respectively. Then x P = w P + vp.
We will require the following inequalities:

LEMMA 7. There exist constants ko, k 2 , and k) so that for small p> 1
andb=p-I,

Proof On WnL, t/t(v)=L7~! Ivj-z;1 In Ivj-z;1 reduces to t/t(v)=
L;EG' Iv;-zjl In Ivj-z;l, where Ivj-z;1 >8 for each iEQc. Since 0 is in
the relative interior of the polyhedral set L there exists C p > ( > 0, so
that the set Q = {v: v E K, II V III < (} ~ L, where p is from Lemma 2. Write
QC=Q+ uQ-, where Zj>O on Q+ and z;<O on Q-. For vEK, with
Ilvll! = I, compute the derivatives of t/t(tv) for It I <C.

d d
- ./. (tv) = - '\' Itv .- z·1 In Itv - z Idt'l' dt ~ I I I I

d d
=- L (z;-tv;)ln(zj-tv;)+-d L (tv;-z;)ln(tvj-z;)

dt iEG+ t ;EG-

= L -v;[ln(z;-tv;)+l]+ L v;[ln(tv;-z;)+l],
ieQ+ iEQ-

and
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Evaluating this expression at t = 0 yields
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Hence there exists k I > 0 such that for v E K and II v III sufficiently small,
t/J(v) ~ k l IIvll i . Since x P--+ 0, we know that wPE Q~ L for P near 1. Then,
for such values of P, Lemma 6 implies that

Similarly, for small P> 1, there exists k 2 > 0 such that t/J(x P) - t/J(O) ~
n IlvPII I In IIv PIII +k 2 I1wPlli. Indeed, by previous scaling Ilzlll ~ I/(2e 2

). Set
a = min{lzj I: i E QC}. Then a> 0 and there exists Po > 1 such that Po> P > 1
implies that w P E Q and maxI <;;j<;;n{ Ixfl, Ivfl, IWfl} < (a/IO). Thus for any
index if Q we have that

0.9a<max {Iz;-xfl, Iz;-vfl, IZj- wfl}<I/e 2
.

i

The desired inequality follows from the fact that both g(x) = -x In x
and h(x) = x In2 x are strictly increasing on [0, I/e 2

]. To see this, observe
that for such p

t/J(xP
) = L Ivflln Ivil + L Ix; - zjlln Ix; - zjl·

Q QC

This implies that

t/J(xP)-t/J(O)=L Iv;lln Iv;1
Q

+L {lxf-z;lln Ix;-z;I-lwf-zil ln Iw;-zjl}
ae

+L {Iw; - Zi lIn Iw; - Zj I - IZjI In IZjI}.
QC

(2 )

In the second summation, the Mean Value Theorem implies that there
exists cf between x; and w; such that

L {I x f - Zi lIn Ix; - ZiI - Iwf - Z; lIn Iwf - ZiI} =L (1 + In IZi - cf I) vf-
ae QC
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Since In II vP II -+ - 00 there exists PI' with Po> PI> 1, such that for
PI >P> 1 and iEQC it follows that 1 +In Iz;-cfl ~In IlvPIII' Hence, for
PI> P > 1, the first two summations in (2) yield

L: Ivflln Ivf 1+ L: {Ixf - z;lln Ix; - z;1
Q QC

(3)

Consider now the final summation in (2). Since »'PEL the function l/J(tw P )

has a local minimum at t = 0 and

for some set Yi' 0 < Y; < 1. The final term above is just the remainder term
of a first order Taylor expansion for l/J(w P ) expanded about t = O. Hence,
using the equivalence of norms on IR n implies that the final summation
satisfies

(4)

for some k 2 >0. Combining (3) and (4) yields

We now bound the difference Ilx P
- zll ~ - llzll~. By the p-norm

optimality of x P this difference must be negative. Now expand Ilzll ~ and
Ilx P - zll ~ into Taylor series about 1 to obtain

and

where {) = p - 1 and the convergence in each series in uniform. To subtract
(7) from (6) consider first the difference in the 11·111 terms. By (1),
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IIxP-zIl 1-lIzI11 ~ko IlvPIII' Similarly, (5) bounds the b'" tenns. To bound
the series terms invoke the Mean Value Theorem to get

for some set () j, 0 < () j < 1. By our restrictions on p, I() jX f - z j I~ 40:/5.
Hence there exists k 3 > 0 such that the above difference is bounded above
by k 3 IlxPII. b2

• Combining these terms yields

o~ IIxP-zlI~-lIzll~

~ko IlvPII. +b{n IIv PII I ln IIv PII , +k2 11wPIID -k3(llxPlltl b2
•

Since IIxPII 1 ,,;; IIv PlI 1 + IlwPIi I we have

O~ IIxP-zlI~-lIzll~

~ko IIv Pll I +b{n IIv PII.ln IIv P II , +k2 1IwPIli} -k3 {lIwPII I + IlvPlld b2
,

which is the desired result. I
We can now prove the main result of this paper.

THEOREM 2. The net x P converges to the natural best approximation at
a rate no worse than O(p - I).

Proof By Lemma 7, there exist positive constants k o, k 2 , k 3 , and PI> 1
so that if PI >p> I,

By replacing k o by some k 4 > 0, we may absorb the final term into the
first and find P2 > I so that for P2 ~ P > 1

and

hold with the second inequality following from the fact that II uP III -+ 0 as
p-+l+. Set /1=exp(-k 4 /(2n)) and '1=(1+/1)/2 and note that 0</1<
'1 < 1 holds. Thus, there exists P3, 1 <P3 < min(P2, 1+ e- I

), such that
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k4/(2k3(P-l)2)~(1]/P)IIIP-I) and 1]~«p-l)/2)P-l hold for 1<p~P3'

Now for a given p, P3 > P > 1, suppose that

(8)

holds. Then 0;:::k4 11v PII I +152n IlvPIII In IlvPll I +15k2l1wPlli and so 0;:::
k4 11v PII 1 +152n IlvPllI In IlvPIII' This implies that plio;::: IlvPII I. Note also
that (8) implies that pliO;::: (2k 315 2 II wPIIllk4) holds since Ix In xl IS

increasing on (0, e -I). Thus, 1] satisfies 1] 110;::: II vP III and

From this it follows that xP, corresponding to this p, satisfies Ilx P III ~
II vP III + II wP III ~ 21] 110

. Since XX is decreasing from I on (0, e -]) it follows
by the restrictions placed on 1] and P3 above that Ilx P III ~ 15 also holds in
this case.

On the other hand, if (8) does not hold for a given p, I < p < P3' then

implies 0;::: k 4 IlvPllI + 15k 2 IlwPII i - 2k 3 IlwP111 152 and hence 0;::: k 2 IlwPlll ­
2k315. Thus, IlwP11 L is 0(15). In this case we also have by our choice of P2
that

so that IlvPII] is 0(15) and IlxP11 1 is 0(15), 15=p-l, as desired. I
Note that if (8) holds for all p near 1 then convergence of at least

exponential rate holds. This must always be the case if x P .1 K for all p
sufficiently close to 1. This yields the following theorem:

THEOREM 3. If x P .1 K for all p sufficiently close to 1 then there exists
y, 1 > y > 0, such that x P converges to the natural best approximation at a
rate no worse than 0(y11(p-l)).

For the special case in which L is a singleton, Theorem 3 yields the
following:

COROLLARY 1. If L is a singleton there exists y, 1 > y > 0, such that x P

converges to the natural best approximation at a rate no worse than
O(ylllp-I).

The examples given earlier illustrate these rates and show the rates to be
sharp. The following example shows that these results need not hold in
general finite dimensional L 1 subspace approximation problems.
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EXAMPLE 3. Consider the I-dimensional problem of approximating
l(x)=1 on [0,1] from the subspace of functions V= {ax:aEIR}. For
p> 1 it is immediate that there exists a unique best approximation
x P= aPx. That is,

f
llaPx-1IPdx=minfllax-1IPdx.

o aEI! 0

Furthermore, it is easily seen that a P ~ 1 for p> 1. Thus, finding best
approximations is equivalent to minimizing Hp(r), r ~ 1, p ~ 1, where

Hp(r) = rIrx-ll Pdx
o

f
llr II (1+(r-l)p+l)

= (1 - rx)p dx + (rx - 1Y dx = ( 1) .
o ~ p+ r

Now H~(r) = (-1 + (pr + l)(r - 1Y)j«p + 1) r 2
). Thus, for p = 1, it is

easily seen that the problem,

I

min f Irx - 11 dx,
r;> I 0

has a unique solution a 1 = fl. Since aP-> ai, we need only consider
1.4 ~ r ~ 1.5 for small p ~ 1. For small p ~ 1, a P is a solution to
(pr + l)(r - 1)P - 1 = O. Note that

(pr+ l)(r-lY-l = (r+ l)(r-l)(r-l)P-I-l + (p-l) r(r-lY

= [(r+ l)(r-l)](I- (2-r»P-I

- 1+ (p - 1) r(r - 1)p.

Applying the Mean Value Theorem to (1 - x Y - I then yields

(pr + 1)(r - 1)P - 1= (r + 1)(r - 1) [1 - (p - 1)( 1 - OP - 2 (2 - r)] - 1

+(p-l) r(r-l )P,

where ( is between 0 and 2 - r. For the values of r of interest, 0 ~ (~0.6

since 1.4~aP~1.5 here. Thus, for small p~l, (1-0P -
2 E[I,2.5],

(1- OP- 2 (2 - aP) E [0.5, 1.5], and aP(aP- 1Y E [( 1.4)(0.4 )3/2, (1.5 )(0.5 f!2]

S [0.3,0.75]. Now H~(aP) = 0 implies that

0= (paP + 1)(aP- 1Y - 1

= (aP+ 1)(aP - 1)[ 1 - (p - 1)( 1 - OP - 2 (2 - aP)]

- 1 + (p - 1) aP(aP- 1y.
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Hence
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(aP+ l)(aP-1 )-1 = (p- 1)([(aP)2 - 1](1- Op-2 (2 - aP)- aP(aP- 1)P)

= (p -1) w p
•

Using the above estimates, w P, defined in the previous equation, can be seen
to be bounded. That is, there exist positive constants C and D such that
C ~ w P~ D. Now (a P)2 = 2 + (p-l) w Pand so that aP= (2+ (p-l) WP)I/2.
Finally, expanding (l + a)1/2 we may write a P =J2 + (p - 1) '1 P where
there exist positive constants J and K with J < ')'P < K. Thus, we have a
linear rate of convergence even through L is a singleton.

It remains open whether this rate holds in general in C[O, 1], or whether
even slower convergence may occur. Also open is the question of the effect
of constraints on the rate of convergence. The P6lya-l algorithm is known
to converge as long as the approximating set is convex. However, it is
not know whether the imposition of constraints slows or accelerates
convergence.
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