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The rate of convergence of the discrete Polya-1 algorithm is studied. Examples
are given to show that the rates derived are sharp.  © 1993 Academic Press, Inc.

Let V be a finite dimensional subspace of R” and fix ze R"\ V. Given a
norm, ||-|, on R”, v*€ V is a best approximation from V to z if

lo* =zl =min{|Jlv—z|:ve V}.

In this setting the existence of a best approximation is immediate. Of
course, different norms may give rise to different best approximations. The
dependence of best approximations on the norm in use has been studied in
a variety of contexts. For example, [1] and [10] are general studies of the
effects of perturbing the norm on best approximation problems.

The p-norms, given by

n Lip
Il =| St | " rp <o, and el =maxi

form a well-known parameterized family of norms on R”. Denote by /7 the
space R” with the p-norm. In the /” family of Banach spaces, selecting a
value of p corresponds to a choice of norm. Each such choice determines
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a different best approximation problem. Discussions of the relative merits
of specific values of p date from the 18th century [2].

For 1 < p < o the corresponding p-norm is strictly convex, so that there
is a unique solution to the best approximation problem for this p. Denote
this solution by x”. For p=1 and p = o solutions to this best approxima-
tion problem need not be unique. The problem of the dependence on p of
best approximations has been extensively studied. Of particular interest has
been the behavior of the arc x” as p — co. The taking of such a limit is
referred to as the Polya algorithm and was first considered by Pdélya in a
related setting [9]. In the subspace setting it is known that the Pélya
algorithm converges and that in general the rate of this convergence is
O(1/p) [3,4].

The behavior of the arc x” as p— 1 has also been studied [6-8, 12].
Taking this limit is known as the Polya-1 algorithm. The Pdélya-1 algorithm
converges in a very general setting, including the subspace problem under
consideration here. Aside from an example and a conjecture [4] little is
known about the rate at which the Polya-1 algorithm converges. In the
following, the rate of convergence is developed. In contrast to the Polya
algorithm rate, it is shown that the rate of convergence of x? depends
heavily upon the set L of /' best approximations. To see this consider the
following examples:

ExampLE 1. In R? let z=(0,0,1) and let V= {(a,a, a):aeR}. Here
the /! best approximation is unique and is the median (0, 0, 0). To find x”,
there is no point in considering a>1 or a<0. So we minimize
2a? + (1 —a)? over [0, 1]. Differentiating gives 2a® — (1 —a)° =0, where
d=p—1. Thus (1—a)=2"%a or 27'°=g/(1—a). For p near I,
i<1—ax<1,so a=0(2 ). Thus x” - x' at an exponential rate.

When the set L is not a singleton, a slower rate of convergence may
hold.

ExaMPLE 2. In R% let z=(2,1,0,0) and V= {a(1,1,1, —1):aeR}.
Here L={a(1,1,1, —1):a€ [0, 1]}. Consider the strict best approxima-
tion x'=a'(1,1,1, —1), the limit of x* as p—1. On L, a' minimizes
Y(r)=2—-r)YIn(2—r)+ (1 —r) n(1 —r)+ 2r In(r). (See Theorem 1.) Now
Y'(r)=21In(r) —In{(2 —r)(1 —r)}, yielding critical values 0, 1, and 2. Since
x' lies in the relative interior of L [6], a' =3. Write x"=a’(1, 1,1, —1).
Since x” - x', we know that for small p>1, 1<a”<] Note that for
values of r between 0 and I, Y, (r)=[z—r(l, LI, =1)[*=(2-r)"+
(1=r)?+2(r)”. Then y,(r)=—p((2—r)’+(1=r)*=2(r)’), where 6=
p—1. Then ¢y(3)= —p((3°+ (1) —2(3))= —p3~%(2° ~ 1)’ <0. This
forces a”>3 for small p>1. Thus, for small p, 2>p>1, I>a?>1%

640/75/3-6
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Therefore, for such small p>1, we may write a”=%+¢,/3, where
0 <e, <4 Hence ¢, satisfies

((4—2,)/3)° +((1 - £,)/3)° = 22 +¢,)/3)°
=0=(4—¢,)°+(1—¢,)°—2(2+¢,)"

Thus, 4°—(4—¢,)°+1—(1—¢,)° +2(2+¢,)° —2(2°) = (2° = 1)>. Now
apply the Mean Value Theorem individually to the expressions (4 — x)°,
(1—x)% (24 x)?, and 2~ all centered at x =0 to get constants c;, 4 — £, <
0, <4, 1—g,<c;<1,2<c;<2+¢,, and 0 <c, < é such that

Oe (¢t '+ s 45 )=(62*1n 2)%

Thus, &,=082>*(In*2)c{~'+c¢5 '+¢3 ')~' and there exist positive
constants A and B such that 4 <22%(In”2)(cS '+ ¢ '+ ") '< B for
p in this range. Hence 446 < |x” —x'||, <4Bd for small p>1. Thus, x?
converges linearly to x' as p — 1.

We now show that this dichotomy in rates holds in general. As above,
denote by L the set of all /' best approximations from V to z. For reR,
we know that rIn(#) — 0 as r - 0. Hence we identify (0 In(0)) with 0 and,
for xe R”, define the function ¥(x) by

n

Y(x)= Z [x;—z;| In|x;—z,].

i=1

The limiting behavior of the net {x”: p> 1} is described in the following
theorem.

THEOREM 1. [6, 8, 12]. Under the above hypotheses, there exists ve L
such that lim, | x? =v. Furthermore, v is in the relative interior of L and is
the unique minimizer of Wy on L.

The element v is known as the ratural best approximation or the strict
best approximation of ze R" from V. Our interest is in the rate at which the
best /¥ approximations converge to the natural best approximation. Since
this rate is unaffected by translation and scaling, we assume that v=0 and
that |z|, <1/2¢* holds. Define Q2= {i:z,=0}. The following lemmas
describe the zero structure of vectors near v=0.

LEMMA 1. Ifve L and i€ Q2 then v,=0.
LEMMA 2. For some p>0 and ¢>0, the set W= {xeR"|x||<p}

has the following property: For xeW and i¢Q, |x;—z;|>¢ and
sgn(z; — x;) = sgn(z,).
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Lemma ! follows from the minimality of ¥(0) on L. Suppose ve L and
v;#0 for some ie Q. Then for sufficiently small A, we would have Ave L
and Y(Av) <y(0). This contradicts Theorem 1. Lemma2 is a simple
consequence of the continuity of each coordinate as a function of x.

The smoothness and strict convexity of the p-norms, 1 <p < o0, yield
well-known uniqueness and characterization results for the corresponding
{7 best approximation problems. While the 1-norm is not smooth, it does

possess one-sided directional derivatives [11]. For x and yeR”, | y||, =1,
define
t —
D, = tim L=l
- 1 0%

D,(x) is well defined for each such x, y pair and has the explicit
formulation
Dy(x)'_‘zsgn(xi) ,V,+Z |yi|)
S S
where S=S,={i:x,=0} and S° denotes the complement of Sin {1, .., n}.
Consider we Wn L. By Lemmas! and 2, w,=0 for ieQ and
sgn(z;,— w;) =sgn(z;) for i¢ Q. Hence

D (z—w)= Z sgn(z,—w;) v, + Z [v;]

i¢ 2 ief2
= Z sgn(z;) v, + Z [v;| =D (z2).
i¢0Q e

This gives:

LEmMMA 3. Let we Wn L and ve R". Then D (z—w)= D (z).

For veL, Lemmal requires that supp(v)< 2°. The following lemma
provides a partial converse.

LEMMA 4. Suppose that ve V and supp(v) S Q2°. Then Ave L for small
A>0.

Proof: There is no loss in assuming |jv||, = 1. Hence,

D,(z)=} sgn(z)v;+ Y [v;/= Y, sgn(z)v,

¢ ieQ ¢

= *Zmn sgn{z, (—v)=—-D_,(z).

This implies that D, (z)=D_,(z)=0. Indeed, if not, then one must be
negative. Without loss of generality, assume D, (0) <0. Then the definition
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of D(z) requires that || fv —z||, < ||z||, for small § > 0. This contradicts the
/' optimality of 0. Now, for |4| sufficiently small, ive W and therefore
sgn(z,)=sgn(z;,— Av,), for all i ¢ Q. Thus,

lz—=dvl =3 lzi— Ao} =} |z,— Aw,]

i=1 i¢Q
= Z sgn(z; — Av,)(z; — Av;) = Z sgn(z;)(z;— Av;)
it Q2 i¢Q

=zl = AD.(2) = llzll:,

implying that lve L. |}

Directional derivatives provide a bound on the approximation error,
lx—zl|l;, near L as follows:

LEMMA 5. Let welLn W, veV with |v|,=1, and D=min(D(z),
D_(z)). Then D=0 and

_llz—w+ vl -z —wl,

B(2) = >D.
(4) 7]

Proof. Note that if D <0, one of the directional derivatives would be
negative. As in Lemma 4, this would contradict the /' optimality of 0. Fix
A>0and let 0 <7< 1 hold. Then,

lz=w+thvlt =z —wli =tz =w+ A0) + (1 =)z —w)ll, — |z —wl,
Stlz—wadvll, + (= 0)lz—wll, = llz—wl,
=t(llz—w+Avl, — [z —wl,)-

Hence,

A z—wH Al —lz—w
Iz =w+ Aol — |z —wl, =4 lim | =1z = wll
it 0+ At

=AiD (z—w)=A4D(2).
Thus, for A> 0 then 8(1)/|4| = D,(z) = D holds. Likewise, for the case 1 <0
essentially the same argument shows that 8(1)/{1| = D _,(z)>= D holds. |
Note that Lemma S is a directional strong uniqueness result at w in the

direction of ve V whenever D > 0 holds. That is,

lz—w+Av] = llz—wl,+ Djw— v —w|,
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holds for all | | sufficiently small. For the special case of w =0, this has the
form

iz + Avlly 2 llzll + Dl Av]l .
If D=0, then no such directional strong uniqueness result exists. In fact,
if D =0 occurs, then for small A>0 both Av and —Av are in L. Indeed,
suppose that D,(z)=0. Then for 4> 0 sufficiently small, —Ave W so that

Iz + A0l =} sen(z)(z+ 4v) + 2 3 |v,]

it ieQ
=zl +4 Y sgn(z))v;+4 3 |v,
i¢0 ieQ

= |zl + 4D (2) = ||z,

Hence, —Ave L and since 0 is in the relative interior of L, it follows that
Av must be in L for sufficiently small 4>0. Thus, the lack of a local
directional strong uniqueness estimate in this case corresponds to
approaching 0 through L locally. On the other hand, if v is perpendicular
to K=span(L) then a directional strong uniqueness estimate at 0 in the
direction of v will hold. Rephrased, this implies that the approximation
error must grow no more slowly than some fixed linear rate for all
directions in K. This is established in Lemma 6.

LEMMA 6. For arbitrary w and v satisfying we Wn L, veV, with
lvll; =1 and v L K, there exists ko> 0 such that

lz—w+ vl Zllz—wl, +ko |4 Joreach AeR.
Proof. For A#0 Lemma 5 implies that
lz—w+Avll, — lz—wl,=14] D.

Now, we claim that there exists ko >0 such that D>k, for all ve V with
lv];=1 and v L K. Indeed, assume that D=D,z) without loss of
generality. If D is not uniformily bounded away from zero we may

construct a convergent sequence v, from V such that ||v,||,=1, v, L K, and
D, (z) < 1/n. Suppose lim, , ,, v, =v*, which can be realized by passing to
subsequences if necessary. Then v*e ¥V, v* L K, and |[v*|,=1. We claim

that D,.(z)=0. To see this, let xe V. Then

D (z)= Z [x;| + z [x:| — Z Ix;| + Z [x,l,

ie 2 ie Iy ie ¥y iedy
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where I', = {i: x;z;,> 0}, ¥,={i:x,2,<0}, and 4,={i:i¢ Q2 and x,=0}.
Of course the final term contributes 0 to the expression. For large n,
=TI, and ¥ .=Y¥, so that

Du,,(z): Z lvm’|+ Z Ivm'l_ Z |Um‘l+ Z i|vni|

ief2 1€ s = i€ dye

and

Dy(z)=3 loX+ ¥ lv}l= % lo*l+ X lv}l.

ief2 i€y ie ¥y i€ dye

This implies that |D, (z) — D,.(z)}} € |lv, —v*|,. Hence D,.(z) =0. Then, as
in the comments following Lemma 5, Av* € L for small | 4|. This contradicts
the fact that v* L K The result now follows, since both v and —v satisfy
the hypotheses. |

As before, let x? be the best /# approximation from V to z. Let w? and
v” be the projections of x” onto K and K+, respectively. Then x? = w? + v?.
We will require the following inequalities:

LEMMA 7. There exist constants ko, k,, and k; so that for small p> 1
and 6=p— 1,

0= ko llo” ]l +8{n Il In 07 [l + ko Iw?IT} — ks {Iw? Il + loP), } 6%

Proof. On WnL, y(v)=37_, |v;—z;| In|v,—2z;| reduces to y(v)=
Nicae |v;—z;| In|v,—z,|, where |v,—z;| >¢ for each ie Q° Since 0 is in
the relative interior of the polyhedral set L there exists {, p>{>0, so
that the set Q= {v:veK, |lv||, <{} =L, where p is from Lemma 2. Write
Q=020 , where z,>0 on Q7 and z,<0 on Q. For ve K, with
loll, =1, compute the derivatives of () for |7] <.

%W(tu):%g‘ [tv,—z;| In |tv, — z,]

d
=—(%,-eg* (z;—tv;)In (z,-—tv,-)+Eiezg_ (tv;—z)1n (tv;—z;)
= Z —U.-[ln(z,»—tui)+1]+ z U,—[ln(w,-—Z,-)+l],
ieQ* ien-
and
2 2

)= ¥ ot 3

o zi—w) G (wi—z)
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Evaluating this expression at ¢ =0 yields
d? v?
S()]mo= T

ief)* |Z,-| ’
Hence there exists k, >0 such that for ve K and v}, sufficiently small,

Y(v)=k, ||vl? . Since x” -0, we know that w”e Q = L for p near 1. Then,
for such values of p, Lemma 6 implies that

WP+ o7, (h)—

Similarly, for small p>1, there exists k, >0 such that y(x?)—y(0)=
nllv?l, In [[v?|l, + k, ||w? 2. Indeed, by previous scaling ||z||, < 1/(2e?). Set
a=min{|z,|:ie 2°}. Then « >0 and there exists p, > 1 such that p,>p > 1
implies that w?”e Q and max, ., {|x/|, [v7], |[w/|} < (2/10). Thus for any
index i ¢ 2 we have that

—Iw?P =zl Z ko 07}, (1)
1

1x? =zl — 2l = ’

0.9x <max {|z,— x?|, |z;— v?|, |z;— w?| } < 1/e>.
i

The desired inequality follows from the fact that both g{(x)= —x Inx
and h(x)=x1n? x are strictly increasing on [0, 1/e?]. To see this, observe
that for such p

Y(x?)=X |v?|In Jo?| + 3 1x7 —z,) In |xf —z,].
2

Q°

This implies that

Y(x?)—y(0)=3 [v7| In |07
2

+2 {Ix? =z In |x? —z,| — |w? —z;| In |w? — z,| }
Q°

+ {IwP—z|In|wf —z,| =z, In |z;|}. (2)
DC

In the second summation, the Mean Value Theorem implies that there
exists ¢? between x? and w? such that

Y Axf—zllnlxf—z,| =W/ —z]In[wf =z} =) (1 +1n|z,—c]|) v?.
nc OC
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Since In |v”f > —oc there exists p,, with p,>p,>1, such that for
pi>p>1 and ie Q° it follows that 1 +1In|z;,—¢?|>=In |v?],. Hence, for
py>p>1, the first two summations in (2) yield

S ot [of | +Y {|x?—z,| In |xP —z,]
e Fodd

—wl—z|In|wf =z} Zn ]l n "], (3)

Consider now the final summation in (2). Since w” € L the function y(tw?*)
has a local minimum at r=0 and
1 (w?)?
Y(w?)—y(0)=3 {Iwf—z|In|w?—z|—|z]In lzi|}=§z

Fod mlzi_yiwipl’

for some set y,, 0 <y,< 1. The final term above is just the remainder term
of a first order Taylor expansion for y(w?”) expanded about t=0. Hence,
using the equivalence of norms on R” implies that the final summation
satisfies

W(w?) —(0) =k, w3 4)
for some k,>0. Combining (3) and (4) yields
Y(x?)—y(0) = n vl Inllv”ll, +k [w?]3. (5)

We now bound the difference ||x” — z||5 — [lz[4. By the p-norm
optimality of x” this difference must be negative. Now expand |[z||© and
[ x# —z| 7 into Taylor series about 1 to obtain

52
lx? =zl =llx" =zl + oyr(x") +?1n2 |xf =zl

X r—2
+6° Z 2 1 le,"—z,-lln’ [x?—z,] (6)
r=2 r 0°
and
52 0 r—2
lz15= lzhy +69(0) + 10 |z, +8% , —= % Iz, In" [z, (7)
r=2 A o 1

where § = p — | and the convergence in each series in uniform. To subtract
(7) from (6) consider first the difference in the | .||, terms. By (1),



DISCRETE POLYA-1 ALGORITHM 321

1x? —zll; — llz|l; = ko lv?]l,- Similarly, (5) bounds the §i terms. To bound
the series terms invoke the Mean Value Theorem to get

o 6r\2
8 T |G T ist - alln Ixf =~z I |
X

r=2
o5
r=2

6
r!

2
Y (In"|8;x7—z,|+rln" ! IG,xf’—z,»|)x{’:I
QC

for some set 0,, 0<60,<1. By our restrictions on p, |0,x7—z,| > 4a/S.
Hence there exists k; > 0 such that the above difference is bounded above
by k, [|x?||, 62. Combining these terms yields

02 |x?—z)7—1lzIl7
Zko 1071l +8{n v? |l In fjo? | +ky lw?lIT} = ks(llx71l,) 6%
Since [|x7|f, < [[v”ll; + iw?|l, we have
0= (x?—zI;—1M=z0}
2 ko o711y +8{n v”lly In o7y + ks 1w (1} — ks {Iw?ll, + (071, } 62,

which is the desired result. ||

We can now prove the main result of this paper.

THEOREM 2. The net x? converges to the natural best approximation at
a rate no worse than O(p —1).

Proof. By Lemma 7, there exist positive constants k,, k,, k;, and p, > 1
sothatif p,>p>1,

0> ko llo”lly +8{n |v7lly In 0PIl + ko Iw? i3} — ks {llw?ll, + 110711, } 62

By replacing k; by some k, >0, we may absorb the final term into the
first and find p, > 1 so that for p,2p>1

02 ky [lo?lly 4+ 0{n o7 In o7, +k, w?lI} — ks Iw?l, 6
and
o7l < |1 Jlo? )]

hold with the second inequality following from the fact that (v”|, = 0 as
p—17*. Set B=exp(—k,/(2n)) and n=(1+ B)/2 and note that 0 <f <
n<1 holds. Thus, there exists p;, 1 <p;<min(p,, 1+e~ '), such that
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ka/Qks(p—1))< (n/B)"? " and n<((p~1)/2)?"" hold for 1<p<p;.
Now for a given p, p; > p> 1, suppose that

[nd o7l In 0?1, | > k382 [lw? ], (8)

holds. Then 03k, v, +2n [v”]l, In 07|, + &k, |w”]? and so 0>
ki lv?)),+62n |v”|l, In |o”]},. This implies that p'°>||v?|,. Note also
that (8) implies that BY°>(2k;6? ||w”|,/k,) holds since |xInx| is
increasing on (0, e ~!). Thus, 5 satisfies #'/° > |v”|, and

0" =(n/B)"° BV = (n/B)""* (2k38” 1wl /ka) = Iw” |l

From this it follows that x”, corresponding to this p, satisfies [|x?|, <
lo?il, + Iw?)l, <2n"°. Since x* is decreasing from 1 on (0, ¢~ ') it follows
by the restrictions placed on n and p; above that [|x?||, <¢ also holds in
this case.

On the other hand, if (8) does not hold for a given p, 1 <p <p,, then

1S 071l In llo” [l | < k30? w” ],

implies 02k, |v?||, + 8k, |w?||3— 2k, |jw?||, 6* and hence 0>k, |w”||, —
2k46. Thus, [[w?|, is O(é). In this case we also have by our choice of p,
that

le? I3 < He?lly In llo?fl | <ksd fiw?l /n

so that ||v?|, is O(d) and || x”||, is O(J), d=p—1, as desired. |

Note that if (8) holds for all p near 1 then convergence of at least
exponential rate holds. This must always be the case if x” L K for all p
sufficiently close to 1. This yields the following theorem:

THEOREM 3. If x” L K for all p sufficiently close to 1 then there exists
¥, 1 >y >0, such that x? converges to the natural best approximation at a
rate no worse than O(y*? =),

For the special case in which L is a singleton, Theorem 3 yields the
following:

CoROLLARY 1. If L is a singleton there exists y, 1 >y >0, such that x*
converges to the natural best approximation at a rate no worse than
0(?”(p_ l)).

The examples given earlier illustrate these rates and show the rates to be
sharp. The following example shows that these results need not hold in
general finite dimensional L' subspace approximation problems.
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ExampLE 3. Consider the 1-dimensional problem of approximating
S(x)=1 on [0, 1] from the subspace of functions V= {ax:aeR}. For
p>1 it is immediate that there exists a unique best approximation
x?=a’x. That is,

1 1
j Ia"x—ll"dx=minJ‘ lax — 1|7 dx.
0 aeR Jo

Furthermore, it is easily seen that a”>=1 for p> 1. Thus, finding best
approximations is equivalent to minimizing H,(r), r> 1, p> 1, where

1
H,,(r):L Irx — 117 dx

r l (1+(r— 1)+
= 1 —rx)Pdx+ -1 dx=—r-—-"
fo (1—rx)*dx " (rx—1)" dx IS
Now H,(r)=(—1+(pr+ )(r=1)")/((p+1)r?). Thus, for p=1, it is
easily seen that the problem,

1
minf Irx — 1] dx,
0

rz1

has a unique solution a‘=\/5. Since a” —a', we need only consider
1.4<r<15 for small p>=1. For small p>1, a? is a solution to
(pr+1)(r—1)?—~1=0. Note that

(pr+Dr—1)/~1=@r+1)r—D)(r—-1)"'—~1+(p—1)r(r—1)°
=[r+Dr—-1)J1—=(2-r)""!
—1+(p—-Dyr(r—1)~.
Applying the Mean Value Theorem to (1 — x)?~! then yields
(pr+D(r=17=1=(r+1)(r= D1~ (p-DA -2 2-r)]-1
+(p—1)r(r—1)%,

where { is between 0 and 2 —r. For the values of r of interest, 0<{<0.6
since 1.4<a”<15 here. Thus, for small p>1, (1-{)""%€[l,25],
(1=8)""2(2—a?)e[0.5,1.5), and a”(a”—1)? e [(1.4)(0.4)*?, (1.5)(0.5)*?]
< (0.3,0.75]. Now H,(a”)=0 implies that
O=(pa*”+ 1) (a?—-1)" -1
=(@"+ 1)@ -1 =(p-1)(1-0""*(2—a")]
—1+(p—1)a”(a®—1)".
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Hence
(@ + 1)@ = D)=L= (p— I)[@) 11 =LY > 2~a’)—a’(a"~ 1))
=(p—1o”

Using the above estimates, w?, defined in the previous equation, can be seen
to be bounded. That is, there exist positive constants C and D such that
C<w?<D.Now (a’)*=2+(p—1)w” and so that a* = 2+ (p—1) w”)">
Finally, expanding (1+«)"? we may write a”=ﬁ+ (p—1)y” where
there exist positive constants J and K with J<y” < K. Thus, we have a
linear rate of convergence even through L is a singleton.

It remains open whether this rate holds in general in C[0, 1], or whether
even slower convergence may occur. Also open is the question of the effect
of constraints on the rate of convergence. The Polya-1 algorithm is known
to converge as long as the approximating set is convex. However, it is
not know whether the imposition of constraints slows or accelerates
convergence.
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